Repository avatar
Other Tools
v0.1.2
active

mercury-spec-ops

io.github.n0zer0d4y/mercury-spec-ops

Modular MCP server for dynamic prompt generation and software development analysis tools

Documentation

Mercury Spec Ops MCP Server: Prompts and Resources as Tools

TypeScript MCP Registry MCP Dev MCP Server MCP Server with Tools standard-readme compliant License: MIT MseeP.ai Security Assessment Badge

The first MCP server to expose dynamic, AI-invocable tools for prompt generation and template assembly.

Transform how AI assistants interact with specialized content. Instead of static prompts and resources, Mercury Spec Ops provides 6 programmable tools that enable AI to dynamically generate technology-specific prompts and comprehensive templates on-demand. Built on a sophisticated modular architecture with 31 technology stacks, 10 analysis dimensions, and 34 template sections—all accessible through simple tool calls.

Features

This MCP server provides a modular, extensible architecture with:

Prompts (Enhanced with Enum Support)

  1. PRD Prompt - Generate Product Requirements Document with modular technology-specific analysis
  2. Codebase Analysis Prompt - Analyze codebases with modular technology/focus-specific analysis
  3. Bug Analysis Prompt - Analyze bugs with modular severity/technology-specific analysis

Resources (Modular Templates)

  1. PRD Template - Modular PRD template with technology-specific sections
  2. Codebase Analysis Template - Modular codebase analysis template with technology/focus-specific sections
  3. Bug Analysis Template - Modular bug analysis template with severity/technology-specific sections

Key Capabilities

Enum-Based Input Validation

  • Technology Stack (31 total):
    • Languages (11): JavaScript, TypeScript, Python, Java, Go, Rust, C#, PHP, Ruby, Swift, Kotlin
    • Runtimes (1): Node.js
    • Frontend (3): React, Angular, Vue
    • Backend (7): Express, NestJS, Django, Flask, Spring, Laravel, Rails
    • Databases (4): MongoDB, PostgreSQL, MySQL, Redis
    • Cloud (3): AWS, Azure, GCP
    • DevOps (2): Docker, Kubernetes
  • Analysis Focus (10 total): architecture, security, performance, testing, documentation, maintainability, scalability, reliability, code-quality, dependencies
  • Bug Severity (4 total): low, medium, high, critical
  • Target Audience: developers, business-users, enterprise, startup, healthcare, finance, and more

Programmatic Prompt Assembly

  • Base prompts + 31 technology modules + 10 focus modules + 4 severity modules
  • Automatic module selection based on input parameters
  • Priority-based module ordering
  • Multi-value support: Analyze multiple technologies and focus areas simultaneously
  • Comma-separated input: "node.js,react,postgresql" or "security,performance,code-quality"
  • Custom instruction integration
  • Intelligent fallback to base prompts

Modular Template System

  • Template sections with dependency resolution
  • Technology-specific template sections
  • Focus-specific template sections
  • Custom section support

Installation

Option 1: Local Development

  1. Clone and install dependencies:
git clone https://github.com/n0zer0d4y/mercury-spec-ops.git
cd mercury-spec-ops
npm install
npm run build
  1. Run the server locally:
npm run mcp

Option 2: Install from npm

npm install -g @n0zer0d4y/mercury-spec-ops

Or use directly with npx (no installation required):

npx @n0zer0d4y/mercury-spec-ops

Usage

Integration with MCP Clients

Configure the server in your MCP client (Claude Desktop, Cursor, etc.):

Using npx (Recommended - No Installation)

For Claude Desktop (claude_desktop_config.json):

{
  "mcpServers": {
    "mercury-spec-ops": {
      "command": "npx",
      "args": ["-y", "@n0zer0d4y/mercury-spec-ops"]
    }
  }
}

For Cursor (~/.cursor/mcp.json):

{
  "mcpServers": {
    "mercury-spec-ops": {
      "timeout": 60,
      "type": "stdio",
      "command": "npx",
      "args": ["-y", "@n0zer0d4y/mercury-spec-ops"]
    }
  }
}

Using Local Installation

For Claude Desktop (claude_desktop_config.json):

{
  "mcpServers": {
    "mercury-spec-ops": {
      "command": "node",
      "args": ["/path/to/mercury-spec-ops/dist/src/server.js"]
    }
  }
}

For Cursor (~/.cursor/mcp.json):

{
  "mcpServers": {
    "mercury-spec-ops": {
      "timeout": 60,
      "type": "stdio",
      "command": "node",
      "args": ["/path/to/mercury-spec-ops/dist/src/server.js"]
    }
  }
}

Windows Local Path Example (Cursor):

{
  "mcpServers": {
    "mercury-spec-ops": {
      "timeout": 60,
      "type": "stdio",
      "command": "node",
      "args": [
        "C:\\Development\\Projects\\MCP-Servers\\mercury-spec-ops\\dist\\src\\server.js"
      ]
    }
  }
}

Important Notes:

  • npx: Automatically fetches the latest version from npm (recommended for most users)
  • Local: Replace the path with your actual project location and run npm run build first
  • Restart: Restart your MCP client after configuration changes

Workflow Examples

Example 1: Enhanced Codebase Analysis

  1. User Prompt: "Analyze this Node.js/TypeScript codebase focusing on security and performance"
  2. Claude Desktop Action:
    • Calls the codebase-analysis-prompt with technology_stack: "node.js,typescript" and analysis_focus: "security,performance"
    • System programmatically assembles: base prompt + Node.js module + TypeScript module + security module + performance module
    • The prompt instructs Claude to first read the resource://codebase-analysis-template
    • Template builder assembles: base template + Node.js sections + TypeScript sections + security sections + performance sections
    • Claude reads the dynamically assembled template
    • Claude analyzes the codebase and generates a comprehensive technology-specific report

Example 2: Enhanced Bug Analysis

  1. User Prompt: "Analyze this critical security bug in React application"
  2. Claude Desktop Action:
    • Calls the bug-analysis-prompt with technology_stack: "react", severity_level: "critical", and bug_type: "security"
    • System assembles: base prompt + React module + security module + critical severity module
    • Template includes: general sections + React-specific + security-specific + critical-severity sections
    • Claude reads the bug analysis template
    • Claude analyzes the bug and generates a comprehensive technology and severity-specific report

Example 3: PRD Generation with Technology Support

  1. User Prompt: "Help me create a PRD for a React-based task management application"
  2. Claude Desktop Action:
    • Calls the prd-prompt with project details and technology_stack: "react"
    • System assembles: base prompt + React module
    • Template builder includes: base PRD template + React-specific considerations
    • Claude reads the technology-enhanced PRD template
    • Claude generates a comprehensive PRD with React-specific sections

Prompt Details

PRD Prompt

  • Name: prd-prompt
  • Arguments:
    • project_name (required): Name of the software project
    • project_description (required): Brief description of the project
    • target_audience (optional): Target audience for the product (enum values)
    • project_type (optional): Type of project (enum values)
    • key_features (optional): Key features to include in the PRD
    • technology_stack (optional): Technology stack to be used (enum values)
    • custom_instructions (optional): Custom instructions for PRD generation

Codebase Analysis Prompt

  • Name: codebase-analysis-prompt
  • Arguments:
    • repository_path (required): Path to the repository to analyze
    • technology_stack (required): Technology stack used in the codebase (enum values)
    • analysis_focus (optional): Focus areas for analysis (enum values)
    • custom_instructions (optional): Custom instructions for codebase analysis

Bug Analysis Prompt

  • Name: bug-analysis-prompt
  • Arguments:
    • repository_path (required): Path to the repository with bugs to analyze
    • bug_description (required): Description of the bug or issue to analyze
    • affected_components (optional): Components affected by the bug
    • severity_level (optional): Severity level of the bug (enum values)
    • bug_type (optional): Type of bug (enum values)
    • technology_stack (optional): Technology stack used in the affected components (enum values)
    • custom_instructions (optional): Custom instructions for bug analysis

Resource Details

PRD Template

  • URI: resource://prd-template
  • Format: Markdown
  • Content: Modular PRD template with technology-specific sections that dynamically assemble based on input parameters

Codebase Analysis Template

  • URI: resource://codebase-analysis-template
  • Format: Markdown
  • Content: Modular codebase analysis template with technology and focus-specific sections that assemble based on analysis parameters

Bug Analysis Template

  • URI: resource://bug-analysis-template
  • Format: Markdown
  • Content: Modular bug analysis template with severity and technology-specific sections that assemble based on bug parameters

Development

Project Structure

src/
├── server.ts                    # Main MCP server implementation
├── types/
│   ├── enums.ts                 # All enum definitions (31 tech + 10 focus)
│   └── index.ts                 # Type definitions and exports
├── prompts/
│   ├── modules/                 # 45 modular prompt components
│   │   ├── technology/          # 31 technology-specific modules
│   │   │   ├── languages/       # 11 language modules
│   │   │   ├── runtimes/        # 1 runtime module
│   │   │   ├── frameworks/      # 10 framework modules (3 frontend, 7 backend)
│   │   │   ├── databases/       # 4 database modules
│   │   │   ├── cloud/           # 3 cloud platform modules
│   │   │   └── tools/           # 2 DevOps tool modules
│   │   ├── analysis-focus/      # 10 focus-area modules
│   │   └── bug-severity/        # 4 severity-specific modules
│   ├── base-prompts/            # Base prompt templates
│   └── prompt-builder.ts        # Programmatic prompt assembly
├── resources/
│   ├── templates/               # Modular template components
│   │   ├── prd/                 # 10 PRD template modules
│   │   ├── codebase-analysis/   # 8 codebase analysis modules
│   │   └── bug-analysis/        # 4 bug analysis modules
│   └── template-builder.ts      # Programmatic template assembly
└── __tests__/                   # Comprehensive test suite (66 tests)
    ├── utils/                   # Utility function tests (enum parser)
    ├── prompts/                 # Prompt builder tests
    ├── resources/               # Template builder tests
    └── types/                   # Enum and type tests

Testing

The project includes a comprehensive test suite with 88% coverage:

# Run all tests
npm test

# Run tests in watch mode
npm run test:watch

# Run tests with coverage report
npm run test:coverage

# Run tests with interactive UI
npm run test:ui

# Test MCP integration
npm run test:mcp

Test Statistics:

  • 66 tests (100% passing)
  • 88.48% overall coverage
  • Statement coverage: 88.48%
  • Line coverage: 88.70%

Building for Production

npm run build

Linting

npm run lint

Extending the System

Adding New Technology Modules

  1. Add the technology to the TechnologyStack enum in src/types/enums.ts
  2. Create a new module file in the appropriate category:
    • Languages: src/prompts/modules/technology/languages/
    • Frameworks: src/prompts/modules/technology/frameworks/frontend/ or backend/
    • Databases: src/prompts/modules/technology/databases/
    • Cloud: src/prompts/modules/technology/cloud/
    • Tools: src/prompts/modules/technology/tools/
  3. Implement the TechnologyPromptModule interface
  4. Export from the category's index.ts
  5. Register it in prompt-builder.ts
  6. Add corresponding template sections in src/resources/templates/
  7. Write tests in src/__tests__/

Adding New Focus Areas

  1. Add the focus area to the AnalysisFocus enum in src/types/enums.ts
  2. Create a new module file in src/prompts/modules/analysis-focus/
  3. Implement the AnalysisFocusPromptModule interface
  4. Export from analysis-focus/index.ts
  5. Register it in prompt-builder.ts
  6. Add corresponding template sections
  7. Write tests

Adding New Severity Levels

  1. Add the severity to the BugSeverity enum in src/types/enums.ts
  2. Create a new module file in src/prompts/modules/bug-severity/
  3. Implement the BugSeverityPromptModule interface
  4. Register it in the prompt builder
  5. Add corresponding template sections
  6. Write tests

Contributing

Contributions are welcome! Please follow these guidelines:

  • Fork the repository and create a feature branch
  • Follow existing code patterns and maintain test coverage above 85%
  • Use Conventional Commits format (feat, fix, docs, test, chore)
  • Ensure all tests pass before submitting a pull request
  • See Extending the System for adding new modules

Report issues on GitHub Issues with clear reproduction steps.

License

This project is licensed under the MIT License - see LICENSE file for details.

NPM
@n0zer0d4y/mercury-spec-ops
Install Command
npm install @n0zer0d4y/mercury-spec-ops