Repository avatar
Developer Tools
v1.4.6
active

kubeview

io.github.mikhae1/kubeview

Read-only Model Context Protocol MCP server enabling code-driven AI analysis of Kubernetes clusters.

Documentation

KubeView MCP – Kubernetes Model Context Protocol Server

License: MIT Node.js Version TypeScript

KubeView is a read-only Model Context Protocol (MCP) server that enables AI agents (like Cursor, Claude Desktop) to inspect, diagnose, and debug Kubernetes clusters safely. It provides a comprehensive set of tools for Kubernetes, Helm, Argo Workflows, and Argo CD.


✨ Features

  • πŸ›‘οΈ Read-Only & Safe: Designed for production safety with zero write access and sensitive data masking.
  • ☸️ Kubernetes Integration: List/get resources, fetch metrics, stream logs, execute commands, and diagnose network issues.
  • πŸ“¦ Helm Support: Inspect releases, values, manifests, and history.
  • πŸ™ Argo Ecosystem: Manage Argo Workflows and Argo CD applications.
  • 🧠 Code Mode: Sandboxed TypeScript environment for complex reasoning and multi-step workflows.

πŸš€ Quick Start

Prerequisites

  • Node.js β‰₯ 18
  • Access to a Kubernetes cluster
  • Optional CLIs on current $PATH if you want to use those plugins: helm, argo, argocd

Installation

# start the server
npx -y kubeview-mcp

# install as a claude code mcp server
claude mcp add kubernetes -- npx kubeview-mcp

Configuration for MCP Clients

Add to your mcpServers configuration (e.g., in Cursor or Claude Desktop):

{
  "mcpServers": {
    "kubeview": {
      "command": "npx",
      "args": ["-y", "kubeview-mcp"]
    }
  }
}

Environment Variables

Configure the server using environment variables:

VariableDescriptionDefault
KUBECONFIGPath to kubeconfig file~/.kube/config
MCP_MODEServer mode: all, code, or toolsall
MCP_LOG_LEVELLog level (error, warn, info, debug)info
MCP_HIDE_SENSITIVEEnable global sensitive data maskingfalse

πŸ› οΈ Tools Overview

Kubernetes

  • kube_list: List resources or get cluster diagnostics.
  • kube_get: Describe specific resources (supports all K8s types).
  • kube_metrics: Fetch CPU/memory metrics for nodes and pods.
  • kube_logs: Fetch or stream container logs.
  • kube_exec: Execute commands in containers (read-only recommended).
  • kube_port: Port-forward to pods/services.
  • kube_net: Run in-cluster network diagnostics.

Helm

  • helm_list: List Helm releases.
  • helm_get: Fetch release values, manifests, and history.

Argo

  • argo_list / argo_get: Manage Argo Workflows.
  • argocd_app: Inspect Argo CD applications and resources.

Utilities

  • run_code: Execute sandboxed TypeScript code for complex tasks.

🧠 Code Mode

Inspired by Code execution with MCP, KubeView ships with a code-mode runtime that allows agents to explore the API, search tools, and execute complex workflows in a sandboxed environment.

What it provides

  • MCP Bridge Layer: Seamlessly connects to all registered MCP server tools.
  • Dynamic TypeScript Definitions: Automatically converts tool schemas into a strongly-typed global.d.ts resource, enabling agents to use valid TypeScript patterns and enjoy type safety without hallucinating parameters.
  • Tool Search Utilities: Runtime helpers like tools.search() and tools.list() allow agents to progressively discover capabilities without needing to load the entire schema context upfront.
  • Sandboxed Execution: A locked-down Node.js environment (via vm) with controlled access to the console and the tools global object, ensuring safe execution of agent-generated code.

Usage

For complex tasks requiring logic, loops, or data processing, use Code Mode:

"env": { "MCP_MODE": "code" }

πŸ’‘ Pro Tip: Code Mode Prompt

The server includes a built-in prompt named code-mode that injects the full TypeScript API documentation, tool overview, and examples into the context.

In Cursor IDE: Simply type /kubeview/code-mode in the prompt (or select it from the / prompt menu). This gives the AI the exact context it needs to write correct run_code scripts immediately.


πŸ’» Local Development

  1. Clone & Install:

    git clone https://github.com/mikhae1/kubeview-mcp.git
    cd kubeview-mcp
    npm install
    
  2. Build & Run:

    npm run build
    npm start
    
  3. Test:

    npm test
    

CLI Usage

You can test tools directly via the CLI:

npm run command -- kube_list --namespace=default

πŸ“„ License

MIT Β© kubeview-mcp team