
open-notebook
io.github.PiotrAleksander/open-notebook
MCP server that wraps the Open Notebook API
Documentation
Open Notebook MCP Server
An MCP (Model Context Protocol) server that provides tools to interact with the Open Notebook API. This server enables AI assistants like Claude to manage notebooks, sources, notes, search content, and interact with AI models through Open Notebook.
Features
- Notebooks Management: Create, read, update, and delete notebooks
- Sources Management: Add and manage content sources (links, uploads, text)
- Notes Management: Create and organize notes within notebooks
- Search & AI: Search content using vector/text search and ask questions
- Models Management: Configure and manage AI models
- Chat Sessions: Create and manage chat conversations
- Settings: Access and update application settings
- Progressive Disclosure: Efficient tool discovery with
search_capabilities
Installation
Using uv (recommended)
# Clone the repository
git clone https://github.com/PiotrAleksander/open-notebook-mcp.git
cd open-notebook-mcp
# Install with uv
uv sync
Using pip
pip install -e .
Configuration
The server requires configuration to connect to your Open Notebook instance:
Environment Variables
Create a .env file or set these environment variables:
# Required: URL of your Open Notebook instance
OPEN_NOTEBOOK_URL=http://localhost:5055
# Optional: Authentication password (if APP_PASSWORD is set in Open Notebook)
OPEN_NOTEBOOK_PASSWORD=your_password_here
# Optional: Transport configuration (default: stdio)
MCP_TRANSPORT=stdio # or streamable-http for remote deployment
Example Configuration
For local development with default Open Notebook settings:
# .env
OPEN_NOTEBOOK_URL=http://localhost:5055
If you've configured authentication in Open Notebook:
# .env
OPEN_NOTEBOOK_URL=http://localhost:5055
OPEN_NOTEBOOK_PASSWORD=my_secure_password
Usage
Running the Server
Development Mode (STDIO)
For local use with AI assistants:
uv run open-notebook-mcp
Or using the MCP CLI:
mcp dev src/open_notebook_mcp/server.py
Production Mode (Streamable HTTP)
For remote deployment:
MCP_TRANSPORT=streamable-http HOST=0.0.0.0 PORT=8000 uv run open-notebook-mcp
Using with Claude Desktop
Add to your Claude Desktop configuration (~/Library/Application Support/Claude/claude_desktop_config.json on macOS):
{
"mcpServers": {
"open-notebook": {
"command": "uv",
"args": [
"run",
"--directory",
"/path/to/open-notebook-mcp",
"open-notebook-mcp"
],
"env": {
"OPEN_NOTEBOOK_URL": "http://localhost:5055",
"OPEN_NOTEBOOK_PASSWORD": "your_password_if_needed"
}
}
}
}
Discovering Available Tools
The server implements progressive disclosure. Use the search_capabilities tool to discover available functionality:
# Get a summary of all tools
search_capabilities(query="", detail="summary", limit=50)
# Search for specific functionality
search_capabilities(query="notebook", detail="summary", limit=10)
# Get full details for a specific tool
search_capabilities(query="create_notebook", detail="full", limit=1)
Example Workflows
Creating and Managing Notebooks
# Create a new notebook
result = create_notebook(
name="AI Research",
description="Research on AI applications"
)
notebook_id = result["notebook"]["id"]
# List all notebooks
notebooks = list_notebooks(archived=False, limit=20)
# Update a notebook
update_notebook(
notebook_id=notebook_id,
name="AI Research (Updated)"
)
# Get a specific notebook
notebook = get_notebook(notebook_id=notebook_id)
Adding Sources
# Add a web source
source = create_source(
notebook_id=notebook_id,
type="link",
url="https://example.com/ai-article",
title="AI Research Article",
embed=True # Generate embeddings
)
# List sources in a notebook
sources = list_sources(notebook_id=notebook_id, limit=20)
Creating Notes
# Create a note
note = create_note(
notebook_id=notebook_id,
title="Key Findings",
content="Important insights about AI applications...",
topics=["AI", "Research"]
)
# Update a note
update_note(
note_id=note["note"]["id"],
content="Updated insights..."
)
Searching and Asking Questions
# Search content
results = search(
query="artificial intelligence",
type="vector",
notebook_id=notebook_id,
limit=10
)
# List available models first
models = list_models(limit=50)
model_id = models["models"][0]["id"]
# Ask a question
answer = ask_simple(
question="What are the main AI applications mentioned?",
strategy_model=model_id,
answer_model=model_id,
final_answer_model=model_id,
notebook_id=notebook_id
)
Chat Sessions
# Create a chat session
session = create_chat_session(
notebook_id=notebook_id,
title="Research Discussion"
)
session_id = session["session"]["id"]
# Build context
context = get_chat_context(notebook_id=notebook_id)
# Send a message
response = execute_chat(
session_id=session_id,
message="What are the key insights from my research?",
context=context["context"]
)
# Get session history
history = get_chat_session(session_id=session_id)
Available Tools
The server provides 39 tools across multiple categories:
Meta Tools
search_capabilities- Progressive tool discovery
Notebooks (5 tools)
list_notebooks,get_notebook,create_notebook,update_notebook,delete_notebook
Sources (5 tools)
list_sources,get_source,create_source,update_source,delete_source
Notes (5 tools)
list_notes,get_note,create_note,update_note,delete_note
Search (3 tools)
search,ask_question,ask_simple
Models (5 tools)
list_models,get_model,create_model,delete_model,get_default_models
Chat (7 tools)
list_chat_sessions,create_chat_session,get_chat_session,update_chat_session,delete_chat_session,execute_chat,get_chat_context
Settings (2 tools)
get_settings,update_settings
Architecture
This server follows MCP best practices:
- Progressive Disclosure: Use
search_capabilitiesto minimize context usage - Context Efficiency: Small outputs by default, with limit parameters
- Dual Transport: Supports both STDIO (local) and Streamable HTTP (remote)
- Error Handling: Structured error messages with actionable hints
- Timeouts: 30-second default timeout for all API requests
- Authentication: Optional Bearer token authentication
Development
Project Structure
open-notebook-mcp/
├── src/
│ └── open_notebook_mcp/
│ ├── __init__.py
│ └── server.py # Main MCP server implementation
├── tests/ # (to be added)
├── pyproject.toml
├── README.md
└── .env.example
Testing
Test the server using the MCP Inspector:
mcp dev src/open_notebook_mcp/server.py
or
npx @modelcontextprotocol/inspector uv --directory ./src/open_notebook_mcp "run" "server.py"
This opens an interactive inspector where you can:
- Browse available tools
- Test tool calls
- Inspect responses
- Debug errors
Adding New Tools
To add new tools:
- Add a
Capabilityentry to theCAPABILITIEStuple - Implement the tool function with
@mcp.tool()decorator - Follow naming conventions:
verb_noun(e.g.,list_notebooks) - Include proper docstrings and type hints
- Return structured responses with
request_id
Requirements
- Python 3.12+
- Open Notebook instance (local or remote)
- Dependencies:
mcp[cli]>=1.23.2,httpx>=0.28.1
Contributing
Contributions are welcome! Please ensure:
- Follow the existing code structure and patterns
- Add tools to the
CAPABILITIESindex - Include proper type hints and docstrings
- Test with MCP Inspector before submitting
License
See LICENSE file for details.
Links
Support
For issues related to:
- This MCP server: Open an issue in this repository
- Open Notebook itself: Visit the Open Notebook repository
- MCP protocol: Check the MCP documentation
open-notebook-mcppip install open-notebook-mcp