
neverinfamous-memory-journal-mcp
ai.smithery/neverinfamous-memory-journal-mcp
A MCP server built for developers enabling Git based project management with project and personal…
Documentation
Memory Journal MCP Server
Last Updated November 26, 2025 - Production/Stable v2.1.0
Project context management for AI-assisted development - Bridge the gap between fragmented AI threads with persistent knowledge graphs and intelligent context recall
🎯 Solve the AI Context Problem: When working with AI across multiple threads and sessions, context is lost. Memory Journal maintains a persistent, searchable record of your project work, decisions, and progress - making every AI conversation informed by your complete project history.
🚀 Quick Deploy:
- PyPI Package -
pip install memory-journal-mcp - Docker Hub - Alpine-based (225MB) with full semantic search
- MCP Registry - Discoverable by MCP clients
📚 Full Documentation: GitHub Wiki
📰 Read the v2.1.0 Release Article - Learn about knowledge graphs, performance optimizations, and relationship mapping
🎯 Why Memory Journal?
The Fragmented AI Context Problem
When managing large projects with AI assistance, you face a critical challenge:
- Thread Amnesia - Each new AI conversation starts from zero, unaware of previous work
- Lost Context - Decisions, implementations, and learnings scattered across disconnected threads
- Repeated Work - AI suggests solutions you've already tried or abandoned
- Context Overload - Manually copying project history into every new conversation is tedious and incomplete
The Solution: Persistent Project Memory
Memory Journal acts as your project's long-term memory, bridging the gap between fragmented AI threads:
For Developers:
- 📝 Automatic Context Capture - Git commits, branches, GitHub issues, PRs, and project state captured with every entry
- 🔗 Knowledge Graph - Link related work (specs → implementations → tests → PRs) to build a connected history
- 🔍 Intelligent Search - Find past decisions, solutions, and context across your entire project timeline
- 📊 Project Analytics - Track progress from issues through PRs, generate reports for standups/retrospectives/code reviews
For Project Managers:
- 👥 Team Context Continuity - Maintain shared project memory across team members and time
- 📈 Progress Tracking - Monitor milestones, velocity, and cross-project insights from issues to PRs
- 🎯 Status Reporting - Generate comprehensive project summaries with PR metrics and timelines
- 🔄 GitHub Integration - Connect entries with Projects, Issues, and Pull Requests for unified tracking
For AI-Assisted Work:
- 💡 AI can query your complete project history in any conversation
- 🧠 Semantic search finds conceptually related work, even without exact keywords
- 📖 Context bundles provide AI with comprehensive project state instantly
- 🔗 Relationship visualization shows how different pieces of work connect
Real-World Example
Without Memory Journal:
Thread 1: "Help me design the authentication system"
Thread 2 (next day): "How should I implement user sessions?"
AI: *suggests approach you already decided against*
Thread 3 (next week): "What was our decision about JWT tokens?"
AI: *no memory of previous threads*
With Memory Journal:
Thread 1: Work captured → "Decided on JWT with refresh tokens"
Thread 2: AI queries history → "I see you decided on JWT. Let's implement refresh token rotation..."
Thread 3: AI finds related entries → "Based on your design from Oct 15, here's the implementation..."
✨ What's New in v2.1.0 (November 26, 2025)
🎉 Complete GitHub Actions Integration
- GitHub Actions Resources - 5 new MCP resources for CI/CD visibility
- Actions Visual Graph -
memory://graph/actions- CI/CD narrative with Mermaid diagrams - Failure Digest Prompt -
actions-failure-digest- Comprehensive failure analysis with root cause identification - Workflow Run Linking - Link journal entries to specific workflow runs
🔍 GitHub Issues & Pull Requests Integration
- GitHub Issues - Auto-fetch, link entries, detect from branch names
- GitHub Pull Requests - Auto-detect current PR, track lifecycle, link entries
- 3 PR Workflow Prompts -
pr-summary,code-review-prep,pr-retrospective - 3 New Resources - Issue/PR entries, PR timelines
✅ True Pyright Strict Type Compliance
- 700+ type issues fixed - Complete strict mode compliance
- All exclusions removed - Zero compromises on type safety
- Better IDE support - Enhanced autocomplete and error detection
Current Capabilities
- 16 MCP tools - Complete development workflow
- 14 workflow prompts - Standups, retrospectives, PR workflows, CI/CD failure analysis
- 13 MCP resources - Recent entries, graphs, project/issue/PR timelines, GitHub Actions
- GitHub Integration - Projects, Issues, Pull Requests, Actions with auto-linking
- Smart caching - 80%+ API reduction (15min issues, 5min PRs/workflows, 1hr projects)
- Knowledge graphs - 5 relationship types, Mermaid visualization
- 10x faster startup - Lazy ML loading (14s → 2-3s)
Complete CHANGELOG → | Architecture Details →
🎯 Workflow Prompts (14 Total)
find-related- Discover connected entries via semantic similarityprepare-standup- Daily standup summariesprepare-retro- Sprint retrospectivesweekly-digest- Day-by-day weekly summariesanalyze-period- Deep period analysis with insightsgoal-tracker- Milestone and achievement trackingget-context-bundle- Project context with Git/GitHubget-recent-entries- Formatted recent entriesproject-status-summary- GitHub Project status reportsproject-milestone-tracker- Milestone progress trackingpr-summary- Pull request journal activity summarycode-review-prep- Comprehensive PR review preparationpr-retrospective- Completed PR analysis with learningsactions-failure-digest- NEW CI/CD failure analysis with root cause identification
📡 Resources (13 Total)
MCP Server Identifier: user-memory-journal-mcp (when using recommended config name; Cursor prefixes your config key with user-)
memory://recent- 10 most recent entriesmemory://significant- Significant milestones and breakthroughsmemory://graph/recent- Live Mermaid diagram of recent relationshipsmemory://team/recent- Recent team-shared entriesmemory://projects/{number}/timeline- Project activity timelinememory://issues/{issue_number}/entries- All entries linked to a specific issuememory://prs/{pr_number}/entries- All entries linked to a specific pull requestmemory://prs/{pr_number}/timeline- Combined PR + journal timeline
GitHub Actions Resources:
memory://graph/actions- CI/CD narrative graph: commits → runs → failures → entries → fixes → deploymentsmemory://actions/recent- Recent workflow runs with CI status (supports?branch=X&workflow=Y&commit=SHA&pr=N&limit=10)memory://actions/workflows/{name}/timeline- Workflow-specific timeline blending runs, journals, PRsmemory://actions/branches/{branch}/timeline- Branch CI timeline with PR lifecyclememory://actions/commits/{sha}/timeline- Commit-specific CI timeline
🗄️ Database Improvements
- Automatic schema migrations (seamless v1.0 → v1.1 upgrades)
- Soft delete support with
deleted_atcolumn - New
relationshipstable with cascading deletes - Enhanced indexes for optimal query performance
🚀 Quick Start
Option 1: PyPI (Fastest - 30 seconds)
Step 1: Install the package
pip install memory-journal-mcp
Step 2: Add to ~/.cursor/mcp.json
{
"mcpServers": {
"memory-journal-mcp": {
"command": "memory-journal-mcp"
}
}
}
Step 3: Restart Cursor
Restart Cursor or your MCP client, then start journaling!
Option 2: Docker (Full Features - 2 minutes)
Step 1: Pull the Docker image
docker pull writenotenow/memory-journal-mcp:latest
Step 2: Create data directory
mkdir data
Step 3: Add to ~/.cursor/mcp.json
{
"mcpServers": {
"memory-journal-mcp": {
"command": "docker",
"args": [
"run", "--rm", "-i",
"-v", "./data:/app/data",
"writenotenow/memory-journal-mcp:latest",
"python", "src/server.py"
]
}
}
}
Step 4: Restart Cursor
Restart Cursor or your MCP client, then start journaling!
⚡ Install to Cursor IDE
One-Click Installation
Click the button below to install directly into Cursor:
Or copy this deep link:
cursor://anysphere.cursor-deeplink/mcp/install?name=Memory%20Journal%20MCP&config=eyJtZW1vcnktam91cm5hbCI6eyJhcmdzIjpbInJ1biIsIi0tcm0iLCItaSIsIi12IiwiLi9kYXRhOi9hcHAvZGF0YSIsIndyaXRlbm90ZW5vdy9tZW1vcnktam91cm5hbC1tY3A6bGF0ZXN0IiwicHl0aG9uIiwic3JjL3NlcnZlci5weSJdLCJjb21tYW5kIjoiZG9ja2VyIn19
Prerequisites
- ✅ Docker installed and running
- ✅ ~500MB disk space for data directory
Configuration
After installation, Cursor will use this Docker-based configuration. If you prefer manual setup, add this to your ~/.cursor/mcp.json:
{
"memory-journal": {
"command": "docker",
"args": [
"run", "--rm", "-i",
"-v", "./data:/app/data",
"writenotenow/memory-journal-mcp:latest",
"python", "src/server.py"
]
}
}
📖 See Full Installation Guide →
📋 Core Capabilities
🛠️ 16 MCP Tools
Entry CRUD • Triple search (FTS5/semantic/date) • Knowledge graphs • Analytics • Export
Complete tools reference →
🎯 14 Workflow Prompts
Standups • Retrospectives • Weekly digests • PR workflows • Goal tracking
Complete prompts guide →
🔄 Git & GitHub Auto-Context
Every entry captures: repo, branch, commit, issues, PRs, projects (user & org)
Integration details →
🔧 Configuration
Optional GitHub Integration:
export GITHUB_TOKEN="your_token" # For Projects/Issues/PRs
export GITHUB_ORG_TOKEN="your_org_token" # Optional: org projects
export DEFAULT_ORG="your-org-name" # Optional: default org
Scopes: repo, project, read:org (org only) • Fallback: Uses gh CLI if tokens not set
Full configuration guide →
📖 Usage Examples
Create an Entry with GitHub Projects
// Create an entry linked to a GitHub Project
create_entry({
content: "Completed Phase 1 of GitHub Projects integration - all core features implemented!",
entry_type: "technical_achievement",
tags: ["github-projects", "integration", "milestone"],
project_number: 1, // Links to GitHub Project #1
significance_type: "technical_breakthrough"
})
// Context automatically includes GitHub Projects info
// Search entries by project
search_entries({
project_number: 1,
limit: 10
})
// Filter by project and date range
search_by_date_range({
start_date: "2025-10-01",
end_date: "2025-10-31",
project_number: 1
})
Create an Entry with Relationships
// Create a technical achievement
create_entry({
content: "Implemented lazy loading for ML dependencies - 10x faster startup!",
entry_type: "technical_achievement",
tags: ["performance", "optimization", "ml"],
significance_type: "technical_breakthrough"
})
// Returns: Entry #55
// Link related work
link_entries({
from_entry_id: 56, // Testing entry
to_entry_id: 55, // Implementation
relationship_type: "implements"
})
// Visualize the connections
visualize_relationships({
entry_id: 55,
depth: 2
})
Search and Analyze
// Full-text search with highlighting
search_entries({ query: "performance optimization", limit: 5 })
// Semantic search for concepts
semantic_search({ query: "startup time improvements", limit: 3 })
// Date range with tags
search_by_date_range({
start_date: "2025-10-01",
end_date: "2025-10-31",
tags: ["performance"]
})
// Get analytics
get_statistics({ group_by: "week" })
Generate Visual Maps
// Visualize entry relationships
visualize_relationships({
entry_id: 55, // Root entry
depth: 2 // 2 hops out
})
// Filter by tags
visualize_relationships({
tags: ["visualization", "relationships"],
limit: 20
})
// Listing resources - IMPORTANT: Call with NO parameters first
list_mcp_resources() // ✅ Returns actual server identifier (e.g., user-memory-journal-mcp)
// Then fetch using exact identifier from list output
fetch_mcp_resource({
server: "user-memory-journal-mcp", // Use exact name from list_mcp_resources()
uri: "memory://graph/recent"
})
// Available resource URIs:
memory://graph/recent // Most recent 20 entries with relationships
memory://team/recent // Recent team-shared entries (v2.0.0)
Note: Always call list_mcp_resources() without parameters first. MCP clients like Cursor may prefix your config name (e.g., memory-journal-mcp becomes user-memory-journal-mcp).
Using Workflow Prompts
Ask Cursor's AI naturally:
"Show me my recent journal entries"
"Prepare my standup for today"
"Generate a weekly digest"
"Find entries related to refactoring"
See all 14 prompts → | Complete examples →
🏗️ Architecture
┌─────────────────────────────────────────────────────────────┐
│ MCP Server Layer (Async/Await) │
│ ┌─────────────────┐ ┌─────────────────┐ ┌─────────────┐ │
│ │ Entry Creation │ │ Triple Search │ │ Relationship│ │
│ │ with Context │ │ FTS5/Date/ML │ │ Mapping │ │
│ └─────────────────┘ └─────────────────┘ └─────────────┘ │
├─────────────────────────────────────────────────────────────┤
│ Thread Pool Execution Layer │
│ ┌─────────────────┐ ┌─────────────────┐ ┌─────────────┐ │
│ │ Git Operations │ │ Database Ops │ │ Lazy ML │ │
│ │ (2s timeout) │ │ Single Conn │ │ Loading │ │
│ └─────────────────┘ └─────────────────┘ └─────────────┘ │
├─────────────────────────────────────────────────────────────┤
│ SQLite Database with FTS5 + Relationships │
│ ┌─────────────────────────────────────────────────────────┐│
│ │ entries + tags + relationships + embeddings + FTS ││
│ └─────────────────────────────────────────────────────────┘│
└─────────────────────────────────────────────────────────────┘
🔧 Technical Highlights
Performance & Security
- Python 3.14 - Latest Python with free-threaded support (PEP 779), deferred annotations (PEP 649), and performance optimizations
- 10x faster startup - Lazy loading of ML dependencies (2-3s vs 14s)
- Thread-safe operations - Zero race conditions in tag creation
- WAL mode - Better concurrency and crash recovery
- Database lock prevention - Single-connection transactions
- Aggressive timeouts - Git operations fail-fast (2s per command)
- Input validation - Length limits, parameterized queries, SQL injection prevention
Semantic Search (Optional)
- Model:
all-MiniLM-L6-v2(384-dimensional embeddings) - Storage: FAISS index for fast similarity search
- Graceful degradation: Works perfectly without ML dependencies
Data & Privacy
- Local-first: Single SQLite file, you own your data
- Portable: Move your
.dbfile anywhere - Secure: No external API calls, non-root Docker containers
📚 Documentation & Resources
- GitHub Wiki - Complete documentation
- Practical Examples Gists - 7 curated use cases
- Docker Hub - Container images
- PyPI Package - Python distribution
- Issues - Bug reports & feature requests
📄 License
MIT License - See LICENSE file for details.
🤝 Contributing
Built by developers, for developers. PRs welcome! See CONTRIBUTING.md for guidelines.
No installation packages available.
Remote
Related Servers
ai.smithery/Hint-Services-obsidian-github-mcp
Connect AI assistants to your GitHub-hosted Obsidian vault to seamlessly access, search, and analy…
ai.smithery/anirbanbasu-pymcp
Primarily to be used as a template repository for developing MCP servers with FastMCP in Python, P…
ai.smithery/saidsef-mcp-github-pr-issue-analyser
A Model Context Protocol (MCP) application for automated GitHub PR analysis and issue management.…